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The Numerical Solution of Boundary Value 
Problems for Stiff Differential Equations 

By Joseph E. Flaherty* and R. E. O'Malley, Jr.** 

Abstract. The numerical solution of boundary value problems for certain stiff ordinary 
differential equations is studied. The methods developed use singular perturbation 

theory to construct approximate numerical solutions which are valid asymptotically; 
hence, they have the desirable feature of becoming more accurate as the equations be- 

come stiffer. Several numerical examples are presented which demonstrate the effective- 

ness of these methods. 

1. Introduction. Stiff initial and boundary value problems for ordinary differen- 
tial equations arise in fluid mechanics, elasticity, electrical networks, chemical reactions, 
and many other areas of physical importance. Singularly perturbed problems, which 
are characterized by differential equations where the highest derivatives are multiplied 
by small parameters, are an important subclass of stiff problems. These problems must 
often be solved numerically; however, because they typically feature boundary layers 
(narrow intervals where the solution varies rapidly) their accurate numerical solution 
has been far from trivial. 

Several schemes have been developed for the numerical solution of stiff initial 
value problems for ordinary differential equations; among them we note Gear's method 
[14] and the method of Bulirsch and Stoer [4]. These schemes work well for mod- 
erately stiff systems; however, as the stiffness increases they all require the use of very 
small mesh spacings over portions of the domain of integration. Thus, computational 
cost increases and accuracy decreases as the stiffness increases. Numerical schemes 
for two-point boundary value problems are not nearly as plentiful. This becomes clear 
when referring to the recent papers in Willoughby [44]. However, we note the work 
of Dorr [8], [9], Abrahamsson, Keller and Kreiss [1], Yarmish [45], and Ferguson 
[10]. Adaptive grid finite-difference schemes have been developed by Pearson [36], 
[37] for second order equations and by Keller [17], [18] and Keller and White [20] 
for systems of first order equations. Keller's schemes have also been applied to partial 
differential equations [19]. Both Pearson's method and Keller's method use imbedding 
techniques to construct finite-difference grids which are dense within boundary layers; 
hence, while both techniques have been successfully applied to several problems, they 
require considerable computational effort for very stiff problems. 

Received April 28, 1975; revised December 15, 1975. 
AMS (MOS) subject classifications (1970). Primary 65110, 34E15. 
*The work of this author was supported in part by the National Science Foundation, Grant 

Number GP-27368. 
**The work of this author was supported in part by the Office of Naval Research, Contract 

Number N0014-67A-0209-0022. 
Partial support was also provided by the Air Force Office of Scientific Research, Grant 

Number AFOSR-75-2818. 
Copyright i 1477, American Mathematical Society 

66 



STIFF DIFFERENTIAL EQUATIONS 67 

We have developed algorithms which numerically construct asymptotic solutions 
of ordinary differential equations belonging to either a class of linear equations or quasi- 
linear second order equations. In essence our methods use singular perturbation theory 
to construct the leading terms in formal asymptotic expansions of the solution. We 
solve for these leading terms using standard numerical techniques. We recall that classi- 
cal singular perturbation methods (cf. Cole [5] or O'Malley [29]) separately solve a 
reduced (or outer) problem away from boundary layers and add appropriate solutions 
of boundary layer (or inner) problems where nonuniform convergence occurs. The outer 
solution follows from a regular perturbation (nonstiff) procedure, as do the inner solu- 

tions (although on a semi-infinite interval in the appropriate stretched boundary layer 
variable). Our numerical procedures avoid difficult stiff integrations in analogous fash- 
ion. While our methods are based principally on the work of O'Malley [32], similar 
ideas have also been used by Miranker [25], Aiken and Lapidus [2], Murphy [28], and 

MacMillan [23] for initial value problems. Their methods, like ours, have the important 

advantage of becoming more accurate as the equations become stiffer. This is because 
our solutions will be asymptotically valid as the small leading coefficients of the differ- 
ential equation tend to zero. 

Many important physical phenomena result in problems featuring nonuniformities 
away from the boundary points. Such interior nonuniformities can occur only when a 
turning point is encountered. This study does not consider these interesting, but more 
difficult problems, as it avoids solutions with turning points. Among numerical studies 
considering such possibilities we mention Dorr [9], Pearson [36], Abrahamsson, Keller, 
and Kreiss [1], and Miranker and Morreeuw [26]. Somewhat related difficulties with 
stiff equation routines are the subject of Lindberg [22]. 

Our most complete results are for linear boundary value problems (Section 2); 
however, we also present results for some second order quasilinear problems (Section 3). 
We hope to later use Howes' recent study [16] to develop numerical algorithms for non- 

linear boundary value problems with turning points. Several examples comparing our 
results with exact solutions, when known, and numerical solutions obtained by either 

a shooting procedure or by Pearson's method [36] are presented in Section 4. These 
results show that our methods can obtain accurate solutions to very stiff problems with 

very little computational effort. 

2. Numerical Method for Linear Boundary Value Problems. We consider a linear 

ordinary differential equation of the form 

m diy 
(2.1) E a(x) d' =? 

j=0 dx' 

on the bounded interval 0 < x < 1 subject to the linear boundary conditions 

x .-i 

y(Xi)(0) + 2 bijy") (O) = fi; i = 1, 2, . . . , 

(2.2a) j=0 
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x .-i 
Y(xd)(l) + a: bi,,(i)(l) = fig; i =r + ,r+2 ...IM 

(2.2b) ij=0 

m > Xr+1 > Xr+2 >m 

We assume that the leading coefficient am(x) is small, but nonzero, throughout 0 < x 
< 1. Furthermore, the coefficients aml (x), am-2 (X), . . . , an + 1(x) are (like am) 

small throughout 0 ? x < 1, but, an(x) is not small on 0 < x < 1. No specific depen- 
dence on a small parameter is assumed. We also assume that the boundary conditions 
have bounded coefficients bi1 and fi which may be small. 

We call the lower order differential equation 
n 

(2.3) E a/(x)y(')(x) = 0 
j=0 

obtained by neglecting the small leading coefficients in (2.1), the reduced differential 
equation. Since an(x) is nonzero, the reduced equation will be nonsingular, and the 
full equation (2.1) will not have turning points. (We refer the reader to Wasow [43], 
McHugh [24], or Olver [34] for a general discussion of turning point theory.) 

Asymptotic solutions of (2.1) are determined by the roots p(x), i = 1, . . . , 

of the characteristic polynomial 
m 

(2.4) E: a,(x)p'(x) = 0, 
j=0 

which has m - n large roots determined asymptotically by the roots of the lower order 
polynomial 

m-n 

(2.5) E an+j(x)pl(x) = 0. 
j=0 

We assume that the roots pi(x), i = 1, 2, . .. , m - n, of (2.5) all have nonzero real 

parts and are distinct throughout 0 < x < 1. Furthermore, suppose that they are 
ordered so that 

Re[pi(x)] < 0, i = 1, 2,...,, 
(2.6) 

Re [p(x)] >0, i= u + 1, u + 2, . . , u + T= m -n. 

Under the above assumptions O'Malley proves [32]: 
THEOREM. (i) If the reduced problem 

orn 

E a1(x)y()(x) = 0, 
j=0 

x .-i 

(2.7) Y(Xi)(O) + ? b 0y(0) = i = u + 1, . . . r, 
j=O 

X .-i 
(Xi)(1) + E by-(i)(1) =fi; i=r+T+ 1, , m, 

j=0 

has a unique solution z(x) and, (ii) if the two matrices 
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(2.8) Pf(O) 1 

[\a1?kU ~oI ~i, j = 1, 2, . U 

and 

P01+j( \Xr+irXr+rl 11=1,2 
(2.9) T i= p= +,2(1) 

[ Q max 1 a k 'Po + k() 
are both nonsingular, then there is a unique solution of the problem (2.1), (2.2) having 
the form 

(2.10) y(x) = L(x) + z(x) + R(x), 

where 

C ~A (x) exp [fJ, 7i(s) ds] 
(2.1la) L (x) PZ 

i= 1 maxi<k<aIpk(0)1|Uo 

and 

rm-n c Ai(x) exp [flX (s)ds] 
(2.1 lb) R(x) = Z i P ) 

i=a+1 maxl<k<,1P,+k(01)I+T 

The Ai(x) are bounded and are chosen so that Aj(0) = 1 for i < a and Ai(l) = 1 

otherwise. Furthermore, z'(x) and y(x) tend asymptotically to z(x) within 0 <x < 1. 

We note that the boundary conditions for the reduced problem (2.7) are obtained 

by cancelling the first a boundary conditions (2.2a) at x = 0 and the first T boundary 

conditions (2.2b) at x = 1. Thus, the signs of the large roots of the characteristic 

polynomial (2.4) are critical in defining the reduced problem. In particular, the re- 

duced problem would not be defined if there were fewer than a boundary conditions 

at x = 0 or fewer than T boundary conditions at x = 1. Indeed a limiting solution 

will not generally exist in such cases. Several additional consequences of the theorem 

are discussed by O'Malley [32], based on earlier work by Wasow [411 and O'Malley 
and Keller [33]. 

If the coefficients in (2.1) are sufficiently differentiable, then (2.10) can be dif- 

ferentiated repeatedly and provides an asymptotic representation of the derivatives of 

the solution. This can be used, as follows, to obtain more specific results about the 

solution y(x) itself: 
COROLLARY. Under the hypotheses of the theorem, the asymptotic solution of 

the problem (2.1), (2.2) satisfies 

(2.12) y(x) L(x) + z(x) + R(x) 

uniformly within 0 < x < 1. Here L(x) is asymptotically zero unless X. = 0 and the 

left boundary layer jump JL = fa - z(O) is nonzero. Then, however, 

a 

(2.13) L(x)~ ciePi(?)x, 
i=n1 

where the ci are uniquely determined by the linear system 
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(2.14) S~j =LLI 

Similarly, R(x) is asymptotically zero unless Xr+r = 0 and the right boundary layer 

jump JR =fr+ - z(l) is nonzero. Then 

(2.15) R (x) ~ cie-Pi~)lx 
i= a+ 1 

where 

Ca+ 1 0 

Cu+2 

(2.16) T . = 

0 

Cmn~JR 

In particular, L(x) and R(x) are asymptotically zero within 0 < x < 1. 

PROOF. Using (2.1 la), we see that the left boundary layer correction is asymp- 
totically negligible unless X. = 0, i.e., the last boundary condition cancelled at x = 0 

has the form Y(0) = 4a. When X, = 0, a boundary layer will generally be required at 
x = 0, otherwise y(x) will converge uniformly there, although its derivatives will not 

do so. Likewise, using (2.1 lb), we see that R(x) is asymptotically negligible unless 

Xr+r = 0, when we generally get a boundary layer at x = 1. 

If X0 = 0, the boundary layer behavior at x = 0 can easily be asymptotically 

determined by finding limiting values for the constants ci of (2.1 la). To this end, we 
substitute (2.10), (2.11) into (2.2a) and make use of the largeness of P, . . . , P to 

obtain 

or ci~i(?))i X AX1cAPO)), 

I=1 maxl<k<,lPk(0)I a =1 max1<ka 'Pk(0)IXU 
(2.17) 

+: 152')(o) ? E b11z~'(0)( ~ ''f1, / = 1, . ., . 

Because X. = 0 and X, > X, for j < a we asymptotically obtain (2.14), where ? 
ci for i. = 1, . . . , a. By hypothesis (ii) of the theorem, (2.14) has a unique solution, 

which is trivial if JL = 0. Similar arguments at x = 1 lead to (2.16). 

Algorithm. We have used the above theorem and corollary to construct the fol- 

lowing algorithm which yields approximate numerical solutions of the boundary value 

problem (2.1), (2.2). 

(i) Determine the reduced equation (2.3) by sampling the coefficients in (2.1) 
for several values of x on [0, 1]. Also check that the leading coefficient am(x) of 
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the differential equation and the leading coefficient an (x) of the reduced differential 
equation are nonzero on [0, 1]. 

(ii) Find the roots p1(x); j = 1, . . ., m - n, of (2.5) using Muller's method [27] 
with the distinct initial guesses [-an(O)/am(0)I 1 /(mn). Check that the p1(x) all have 
nonzero real parts and are distinct throughout [0, 1]. Calculate a and r as defined in 
(2.6), and, hence, determine the boundary conditions for the reduced problem. 

(iii) Calculate the matrices S and T defined in (2.8), (2.9) and check that they 
are nonsingular by using Gaussian Elimination to evaluate their determinants. 

(iv) Solve the reduced problem by numerically finding a fundamental set of solu- 
tions of the reduced equation (2.7), i.e., by finding numerical solutions zk(x), k = 1, 
2,. .. ,n, of 

n 
E a1(x)y(')(x) = 0, 

(2.18) j0= 

y ')(0) = 6k-Ji' i =0, 1, ..,n-1, 

where 6ki is the Kronecker delta. The solutions zk(x) are found on 0 < x < 1 using 
a fourth order implicit Adam's method (cf. Gear [14] ). The step size h for the numer- 
ical integration is selected so that the maximum local discretization error T(h) is such 
that 

T(h) [ - maxn +1<lI< m I a1(x)I 

(2.19) max )Z l Imax 106, max maxII (X) I 

This insures that a solution with more accuracy than necessary is not obtained. The 
solution of the reduced problem is calculated as 

n 

(2.20) z(x) = E cxkzk(x), 
k=1 

where the cxk are the solutions of the linear algebraic system 

a1x1+i + E b111+1=fi, i= 1,.. ., r, 
j=0 

(2.21) 
n A 

this [k(i)(1) + i(1) k fi, = r + 1,..., m. 
k=l j=o0 

If this system is nonsingular, then the reduced problem will have a unique solution. 
We note that the reduced problem is not stiff, hence, the reduced problem is solved 

without using a small step size. 

(v) Add any boundary layer corrections to the reduced solution using (2.13), 
(2.14) and (2.15), (2.16). The matrices S and T are saved from step (iii) in factored 
form so that (2.14) and (2.16) are easily solved by forward and backward substitution. 

We note that our procedure obtains a numerical approximation to the leading 
terms of the appropriate asymptotic expansion of the solution without explicitly identi- 

fying the small parameters involved. This approach has also been used by several 
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physicists and mathematicians (cf. Froman and Froman [131). The asymptotic error 
of our approximation is uniformly 0(e), where we may take e as either 

a1(x) 1/(m-n) 

(2.22a) em= xax)I 
0<x<1l;n+ 1<6jm an(X)| 

or 

(2.22b) e = min I1/ lpi(X)I 
06x61;1?i<m-n 

This would be comparable to a relatively high order O(hp) of discretization error re- 
sulting from integration with a moderate step size h. Our results could be strengthened, 
if necessary, to a higher order asymptotic validity in e. 

Our algorithm has been successfully applied to several examples which are dis- 
cussed in Section 4. 

3. A Method for Some Second Order Quasilinear Equations. To develop a gen- 
eral theory for analogous nonlinear boundary value problems would seem very difficult 
(cf. O'Malley [29] for some of the several complications that can occur). We note, 
in particular, that nonlinear initial value problems are far more tractable than two-point 
problems, which generally require growth restrictions of Nagumo-type on the nonlinear- 
ities. Except for the linear problems already discussed, we shall not treat initial value 
problems. We note, however, that methods based on such initial value problem algo- 
rithms have successfully been applied to classical optimization problems by Boggs [3]. 

Our objective herein is to study only quasilinear scalar equations, although we 
anticipate that our ideas have wider applicability. Hence, we confine our attention to 
the boundary value problem 

(3.1) ao(x, y)y" + al(x, y)y' + a2(x, y) = 0, 0 < x ? 1, 

(3.2) y(A) = fT, y(l) = 
f2, 

where the a 's are bounded for y bounded and a0 is small, but nonzero throughout 
0 < x ? 1. We further restrict our attention to the two special cases when either (i) 
al 0 or (ii) lal/ao I is nowhere small compared to la2/ao l. 

Singular perturbation problems with ao(x, y) = E2 have been considered for both 
cases (i) and (ii) by O'Malley [29] and for case (i) by Fife [11], [12]. In particular, 
we recall Fife's result for the equation 

(3.3) e2y " = g(X, 0 < X <1, 

subject to the boundary conditions (3.2). He obtains a limiting solution z(x) satisfy- 
ing the reduced equation 

(3.4) g(X, z(x)) = 0 

within (0, 1) provided that gy > 0 along z(x) and 

(3.5a) | (?) g(0, y) dy > 0 for u between z(0) and (including) fi 
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and 

(3 .5b) f l )U g(l, y)dy > 0 for u between z(1) and (including) f2. 
(3.5b) ~(1) 

There are boundary layers at both endpoints. These conditions are weaker than more 

familiar ones requiring that gy remain negative in the boundary layers. 

Analogously, O'Malley [29] has shown that the equation 

(3.6) e2y" ? f(x, y)y' + g(x, y) = 0 

subject to boundary conditions (3.2) has a limiting solution z(x) satisfying the terminal 

value problem 

(3.7) f(X, y)y' + g(x, y) = 0, y(1) = f2 

within (0, 1], provided that, for some K > 0, f > K along z(x) and 

(3.8) (f1 - z(?)) (?) f(O, y)dy > 0 for u between z(0) and f1. 

There is then a boundary layer at x = 0. If instead f(x, y) were negative, the limiting 

solution would satisfy the boundary condition at x = 0; and there would be a bound- 

ary layer at x = 1 provided that the appropriate integral inequality is satisfied there. 

Thus, for the boundary value problem (3.1), (3.2) without explicit dependence 

on a parameter, we may expect any bounded limiting solution z(x) to satisfy either 

the reduced algebraic equation 

(3.9) a2(x, y) = 0 

in case (i) or the reduced differential equation 

(3.10) a1(x, y)y' + a2(x, y) = 0 

in case (ii). Many of the potential limiting solutions can be rejected as being inappro- 

priate. However, our requirements are more stringent than necessary, so that we may 

eliminate some potentially valid limiting solutions. For example, because of their 

inherent difficulties, we avoid turning points by requiring that a2y(x, z(x)) = 0 when 

(3.9) applies and al(x, z(x)) = 0 when (3.10) applies. 

Applying Fife's results, we obtain: 

THEOREM. Consider the boundary value problem 

(3.11) a0(x,y)y" +a2(xY) = 0, Y(O) =fi, y(1))=f2 

Suppose z(x) satisfies the reduced problem 

(3.12) a2(x, Z) = 0 

and further satisfies 

ao(x, z) < < a2y(x. z), and 

(3.13) a (a2(XI Y) < 0 
a0 (x, Y) / (Xz(X)) 
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throughout 0 < x < 1 and that 

(vL(u) _ U a2(0, u + z(0)) d->>O d 
u U ao(O, u + z()) 

(3.14) 
VR(u) - 1 ua2(1, u + Z(1)) 

u U ?ao(lju+z(0)) 

for u between 0 and including L(O) f1 - z(O) and R(1) f2 - z(1), respectively. 
Then, there exists an asymptotic solution y(x) to (3.11) such that 

(3.15) y(x) - L(x) + z(x) + R(x) 

uniformly within 0 < x < 1. The boundary layer corrections L and R are asymptoti- 
cally zero within (0, 1). Their inverse functions are given by 

x(L) = L(0) du/wL(u), and 
(3.16) ( 

(x(R) = 1 + IR(l) dU/WR (U) 

respectively, where 

WL(U) = -V'5iQJUi sgn(L(O)), and 

wR(u) = -N/2Jvji(j sgn(R(1)). 

We note that within (0, 1), the asymptotic theory involves an 0(p) error for 

(3.18) 2 ao(x, z(x)) 
,u = max a2x(xz(x)) 

Within each boundary layer, the appropriate boundary layer equation should be studied 
(cf. O'Malley [29]). Thus, at x = 0 the boundary layer correction L(x) should satisfy 

d2L 
(3.19) a0(O, L(x) + z(O)) dj + a2(0, L(x) + z(O)) = 0, 

have the initial value L(O), and decay to zero for x > 0. The differential equation 
(3.19) can be formally justified by introducing the small parameter 

(3.20) 2 = max I u/vL (u) I 

for u between 0 and L(O), and the corresponding stretched variable t = x/e. Multi- 
plying (3.19) by dL/dx and integrating yields the implicit solution (3.16). 

We note that the conditions (3.14) are guaranteed by (3.13) provided that the 
boundary layer jumps IL(O)I and IR(O)I are small. We also note that there is consider- 
able practical advantage in obtaining x as a function of L (or R), because L (or R) 
varies much more rapidly than x in the boundary layers. Indeed, Vishik and Lyuster- 
nik [40] already used such changes of dependent and independent variables to convert 
singular perturbation problems to regular ones. 

Relying on O'Malley [29], we obtain: 
THEOREM. Consider the boundary value problem 
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(3.21) a0(x, y)y" + a1 (x, y)y' + a2(X, Y) = 0, Y() = f1 Y(1) =f2 

(a) Suppose z(x) satisfies the reduced problem 

(3.22) a1(x, z)z' + a2(X, Z) = 0, Z(1) = f2 

and further satisfies 

(3.23) a1(x, z) 

a2(X, z) = O(al(x, Z)) 

throughout 0 < x < l and 

(3.24) W ()_ ulouz? du <<O 
U U ? ao(O, U + Z(O)) 

for u between 0 and including L(O) f, - z(O). Then, there exists an asymptotic solu- 
tion y(x) to (3.21) such that 

(3.25) y(x) L(x) + z(x) 

uniformly within 0 < x S 1. The boundary layer correction L(x) is asymptotically 
negligible for x > 0 and has the inverse function 

(3.26) x(L) = JL(O) du/WL(u). 

(b) Suppose, instead, that z(x) satisfies the reduced problem 

(3.27) a1(x, z)z' + a2(X, Z) = 0, Z(0) = f1 

and that 

a1(x, Z)<<~n 
(3.28) a0(x, z)<< d 

a2(x, z) = O(a 1 (x, z)) 

throughout 0 < x < 1 and 

(3.29) WR((u) 1 ual(, u + Z(1)) du>>O 

u u ao( u + Z(1)) 

for u between 0 and including R(1) = f2 - z(1). Then, there exists an asymptotic 
solution y(x) to (3.21) such that 

(3.30) y(x) z(x) + R(x) 

uniformly within 0 < x < 1. Here, the boundary layer correction R(x) is asymptoti- 
cally negligible for x < 1 and has the inverse function 

(3.31) x(R) = 1 + $(R) du!WR(U). 
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In these results, the asymptotic solution has an 0(p) error within (0, 1) for 

(3.32) p = max ao(x, z(x)) 
O<x<1 a1(X, z(x)) 

while the error of the boundary layer correction L(x), for example, is 0(e) for 

U 
(3.33) e = max W 

WL(u) 

with u between 0 and L(O). The appropriate boundary layer equation is 

(3.34) a0(O, L(x) + z(0)) d + a,(O, L(x) + z(O)) d = ?. 

Its unique decaying solution for the given initial value is expressed in (3.26). If z(O) = 

t1, of course, there is no need for the boundary layer correction. 
Several complications can occur for the equation (3.1) if al is allowed to be 

small. If (3.1) has a limiting solution z(x) satisfying a2(x, z(x)) = 0, then ao and al 
must be small along z(x). Additional restrictions are required at the endpoints in order 
to allow for the necessary boundary layers. This is clear from the linear problem 

(3.35) ey" + pay' + by = O, b =#O, 

where the solution depends critically on the size of C/,2 as e and p both tend to zero 
(see Section 4). Moreover, the thickness of the boundary layer changes significantly 
if al ceases to be small within the boundary layer. In fact solutions can fail to exist. 
O'Malley [32], for example, considered the equation 

(3.36) y" + a1(y)y' -y = 0, 

where a is a smooth, monotonically increasing function satisfying 

i2 1h <yS1< 
(3-37) a, (y) = 

(0, 0 <y < 1/4. 

For y(O) = y(1) = 1, the problem has a solution tending to the solution of the reduced 
problem 

(3.38) 2y' -y = 0, y(1) = 1 

for x > 0 with a boundary layer of thickness 0(c). It was claimed that another solu- 
tion tended to zero within (0, 1). This would be true for y(O) = y(1) < 1/4, but not 
for the prescribed conditions. (This is because the boundary layer interval with al > 
o corresponds to a boundary layer of thickness 0(e) at x = 0, rather than the 0(W../) 
boundary layers at both endpoints encountered when al 0.) Thus for nonlinear 
problems, convergence for e O- 0 often requires restrictions on the size of the bound- 
ary layer jumps. Such restrictions have been required in the analytic theory (cf. Wa- 
sow [42]), but can sometimes be removed. 

In both cases (i) and (ii) we have required that the boundary conditions pre- 
scribe y at each endpoint. If the boundary condition, say at x = 0, has the form 
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(3.39) y'(0) + bi Oy() = f, 

then rapid decay of the boundary layer correction will require y'(0) to be bounded and 
the boundary layer jump to be small to satisfy (3.39). 

Algorithm. We have used the above theoretical results, as follows, to construct 
approximate numerical solutions of (3.1), (3.2): 

(i) Find solutions of the reduced problem. 
(a) In case (i) we use Muller's method [27] to find all real finite roots of 

a2(0, y) = 0. Then, using these roots as initial guesses, we solve (3.9) for z(x) by New- 
ton's method in steps of h = 1/N from x = 0 to 1. We reject any solution that does 
not satisfy the sign condition on (a2/ao)y. 

(b) In case (ii) we use a fourth order Adam's predictor-corrector method to solve 
(3.10) subject to one of the boundary conditions (3.2). The step size h is selected in 
the same manner as described for linear equations in Section 2. We reject any solution 
that does not satisfy the sign condition on al/a0. 

(ii) Calculate vL(u) and vR(u) or WL(u) or WR(u) using the appropriate equa- 
tion [either (3.14), (3.24), or (3.29)] by the Corrected Trapezoidal Rule [7] with M 
uniform steps of either h = (f1 - z(O))/M or h = (f2 - z(1))/M for u between 0 and 
either f' - z(O) or f2 - z(l), respectively. We reject any solution which does not satis- 
fy the appropriate sign condition on vL, VR, WL or WR. The Corrected Trapezoidal 
Rule is used because of its accuracy and because the derivatives involved must be avail- 
able to perform the sign test in (i)(a). 

(iii) Calculate x(L) and/or x(R) from either (3.16), (3.26), or (3.31). The inte- 
grands involved in this calculation are all singular at L or R = 0, so, in order to pre- 
serve numerical accuracy, we evaluate them in a modified form. For example, we re- 
write (3.16a) as 

(3.40) x(L) = In ( 
L 

-z(0)) If+ d.Z(O) [w;(u) d 

The modified integrands are evaluated by the Trapezoidal rule for L = - z(O) or 
R = f2 - z(l) until either IuI < 10-7 or x is outside the interval [0, 1] . (We note 
that the hypotheses imposed imply that the boundary layer equations are asymptoti- 
cally stable in the appropriate stretched variable.) 

(iv) Add the boundary layer correction(s) to the reduced solution. 

4. Numerical Examples. We have conducted several numerical experiments 
which compare the results of our asymptotic methods to exact solutions, when known, 
and numerical solutions obtained by either a shooting procedure or by Pearson's meth- 
od [36], [37]. 

The shooting procedure has been coded to solve linear boundary value problems 
of the form (2.1), (2.2) using Gear's method [14] to construct a fundamental set of 
solutions to initial value problems for the equation and Gaussian Elimination to solve 
the linear algebraic system that determines the initial conditions. 



78 JOSEPH E. FLAHERTY AND R. E. O'MALLEY, JR 

Pearson's method uses a variable mesh spacing on [0, 1] and approximates first 

and second derivatives at a mesh point xi by 

(4.1 ) y (j +lY}h ,Y- 

(4.2) hy() I (yW+ 1 - 
y,) 

- 
h(yj 

- 
yi-1 ) 

i hihjh11 (hi - hj- ) 

where hj= -x+ xj and y, denotes the numerical approximation to y(x,). We use 
these approximations in either a second order linear differential equation or a second 

order quasilinear differential equation of the form (3.1). This gives either a linear or 

nonlinear tridiagonal algebraic system, respectively, which must be solved for the values 

of yj at each mesh point. For a given mesh spacing we solve the linear algebraic system 

directly using the tridiagonal algorithm, while we solve the nonlinear algebraic system 
by Newton iteration using the tridiagonal algorithm. For singularly perturbed differen- 

tial equations this process can give eroneous results unless the mesh spacing is suffi- 

ciently dense within the boundary layers. This relates to the difference equation not 

being of positive type (cf. Parter [35] or Hemker [15]). Pearson's idea is to solve the 

problem in e-steps. (For differential equations without explicit dependence on a small 

parameter, we may take e as the ratio of the maximum absolute value of the small co- 

efficients, provided that the nonsmall coefficients are 0(1). Such an e is generated by 

our procedure.) Thus, we solve a series of problems in which the parameter e is made 

successively smaller. The mesh is first made uniform and, for quasilinear equations, we 

use the result of our asymptotic method as an initial guess for the y1. After the ap- 

propriate algebraic system has been solved for y1, the mesh spacing is adjusted by add- 

ing additional points between any pair of adjacent mesh points, say x1 and x+,1, where 

Iyj+ 1 - Yj I > 6 {max, Iy1 I -min, Iy1I}. We performed our calculations with 6 = 10-2 
and 10-3 and used Pearson's [36] algorithms for adding mesh points and smoothing the 

new mesh. The algebraic system is resolved until no new points are added. The entire 

process is then repeated for a smaller value of e using the mesh spacing and, for quasi- 

linear equations, the previous step's yj values as initial guesses. 

Both the shooting procedure and Pearson's method were chosen for our numeri- 
cal study primarily because they are easily coded. They would in general not be com- 

petitive with more recently developed procedures such as Scott and Watts' orthogonal- 

ization code [38] , Keller's finite-difference methods [17], [18], [20], or Lentini and 

Pereyra's deferred correction routines [21] . Nevertheless, the following comparisons 

clearly demonstrate the principal advantage of our methods, namely that they increase 

in accuracy, without additional computational cost, as the equation becomes stiffer. 

Thus, for those problems where our methods are applicable, they would eventually 

surpass, in both accuracy and speed, any method that requires additional computation- 
al effort as stiffness increases. 
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Example la: =l5/2 

max eA ma x e S(s(x) max P2( ) max eP3(x) 
xc[O,l] xc[O,l] xc[O,l] xc[0,l] 

101 1.7(-4) 4.6(-4) 3.3(-4) 3.2(-6) 

10-2 0 * 7.4(-4) 5.9(-6) 

10- 3 0 9.4(4) ** 

10-4 0 7.2(-4) 

Norm. avg tA=l.0 ts=4.3 t 2=3 0 t =23.5 
exec time 

Example lb: ?2 

10-1 1.0(-3) 2.2(-7) 1.0(-4) 9.4(-7) 

10 4.6(-8) * 1.7(-4) 1.6(-6) 

10-3 1.1(-7) 1.8(-4) 1.7(-6) 

1o-4 0 1.7(-4) ** 

Norm. avg t=1.0 ts=10.7 t 35.3 t 47.1 
exec time 

Example ic: E=" 

3.4(-2) 1.2(-7) 1.8(-5) 2.2(-7) 

10-2 3.7(-5) 1.3(-6) 5.0(-5) 5.4(-7) 

10-3 4.9(-8) * 2.0(-5) 6.9(-7) 

10-4 4.6(-8) j _ 3.7(-5) 1.7(-6) 

Norm. avg tA=l.0 ts=5.2 tP2=2.4 tP3=22.1 
exec time 

TABLE 1 

Comparison of exact and numerical solutions for Example 1. A * 

indicates that a solution could not be found using single 

precision arithmetic. A ** indicates that a solution 

could not be found using less than 5002 points 

In all of the tables describing the results of our numerical experiments we use the 

subscript E to denote the exact solution, A to denote our approximate numerical solu- 

tion, S to denote the solution obtained by shooting, P2 to denote the solution obtained 

by Pearson's method with 6 = 10-2, and P3 to denote the solution obtained by Pear- 

son's method with 6 = 10-3. We compare the results of the numerical methods to the 

exact solution whenever the exact solution is known. We use the symbol e to denote 
the absolute difference between the exact solution and a numerical solution; hence, 
eA (X) = IYE(X) - YA (X) I. Whenever the exact solution is not known we compute the 

difference between the asymptotic solution and a numerical solution using the symbol 
d to denote this difference. Thus, ds(x) denotes 1yS(X) - YA (X) I. Differences recorded 
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Example 2a: P5/2 

Interval max 'YE (x) max e A(x max e (x) 

ii I=[X LlxR] XEI Ex CI A Xd S 

10- 0,10- 1.0 2.0(-9) 6.5(-8) 

10- ,0.1 0.37 3.8(-8) 1.6(-7) 

0.1,1.0 1.5(-5) 0 2.2(-9) 

10- 3 0,10- 2 1.0 4.3(-8) 5.8(-8) 

10- ,1 2.8(-5) 2.3(-11) 6.7(-7) 

Norm. avg Exec time tA=l. 0 ts=71.0 

Example 2b: p3/2 

101 0,1.0 1.0 0 2.0(-4) 

10-2 0,1.0 1.0 0 3.1(-4) 

U ~ 0,1.0 1.0 0 6.8(-4) 

10-4 0,1.0 1.0 0 2.0(-3) 

Norm. avg Exec time tA=1.0 ts=6.8 

TABLE 2 

Comparison of exact and numerical solutions for Example 2 

as 0 in the tables imply agreement to at least seven significant digits. We terminated any 

calculation using the shooting method when an answer could not be obtained with a 

minimum step size larger than 10-13 and single precision arithmetic. We terminated 

any calculation using Pearson's method when an answer could not be obtained with 

less than 5002 mesh points. All calculations were performed on a CDC 6600 computer 

at the Courant Institute, New York University. 

We present the results of numerical experiments on five linear differential equa- 

tions and three nonlinear differential equations. 

Example 1. ey" + muy' -y = 0, y(O) = 1, y(l) = ?6 where e and g are small 

constant parameters. This example was introduced by O'Malley [32] and is interesting 

because different boundary layer behaviors result depending on whether e/Ai2 -1 0, 

e/A2 )- 1, or e/42 -0 as j ;- 0. In all cases the limiting solution within (0, 1) is 

trivial and the solution is easily determined asymptotically by expanding the exact solu- 

tion of the constant coefficient equation. We made runs for e = A/5/2 (Example la), 

e = /12 (Example Ib), and e = p, (Example Ic) for p, = 10-l, i = 1, 2, 3, 4. Compari- 

sons between the exact and numerical solutions are presented in Table 1. The average 

execution time per calculation performed, normalized with respect to the execution 

time of the asymptotic solution is also presented in the table. We observe that the 

shooting procedure does quite poorly for this example as it did for all examples with 

boundary layers at both ends of the interval. In all three cases our method yielded 
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a =2.0 a =1.1 

Interval max d m max d max dP3 max dS max dP2 max dP3 
C I=[XL'xR] x 2 l x a x d x m x 3 x a _~~~~~~~c xi x. x_ . x . .. 

lo-1 0,0.2 1.9(-2) 1.9(-2) 1.9(-2) 9.4(-2) 9.4(-2) 9.4(-2) 

____ 0.2,1.0 2.2(-2) 2.2(-2) 2.2(-2) 1.6(-1) 1.6(-1) 1.6(-l) 

02 0,10-2 1.8(-3) 1.7(-3) 1.8(-3) 2.1(-2) 2.1(-2) 2.1(-2) 

10- 2,1.0 2.9(-3) 2.9(-3) 2.9(-3) 7.2(-2) 7.2(-2) 7.2(-2) 

10- 0,10-3 2.4(-4) 2.9(-5) 2.3(-4) 7.4(-3) 7.2(-3) 7.4(-3) 

10- 3,'1.0 3.4(-4) 3.2(-4) 3.0(-4) 1.6(-2) 1.6(-2) 1.6(-2) 

10- 0,10-4 6.8(-3) 1.7(-4) 2.3(-5) 2.8(-3) 7.2(-4) 9.0(-4) 

10 -4,1.0 1.2(-2) 5.5(-5) 3.2(-5) 8.4(-3) 2.2(-3) 2.1(-3) 

10-5 0,10-5 1.0(-2) 1.9(-4) 1.8(-6) 2.1(-2) 9.7(-5) ** 

_ o 105,1.0 1.9(-2) 1.3(-4) 5.3(-6) _8.9(-2) 3.4(-4) _ 

Norm Avg t A=.0 tS=8.4 tP2= 3.8 tP3=32.8 ts=9.7 tp2=3.4 tP3=28.3 
Exec time 

TABLE 3 

Difference between asymptotic and numerical solutions for 
Example 3. A ** indicates that a solution could not be 

found using less than 5002 points 

max e A max e 1 
.. C xE[0,1] xc[0,1J j 

10- .3(1 1.1( (-7) 

10 8.2(-2) 6.0(-6) 

10-3 3.4 (-2) * 

10-4 1.2(-2) 

10-5 4.0(-3) 

Norm avg 
Exec time t =1.0 ts=10. 

TABLE 4 

Comparison of exact and numerical solutions for Example 4. A* 
indicates that a solution could not be found using single 

precision arithmetic 

very accurate results for , < 10-2 for very little computational cost, and for Examples 
la and lb, it also gave accurate results for ,u = 10-1. Graphs of the asymptotic solu- 

tions of Examples la, lb, and Ic are presented in Figures 1, 2, and 3, respectively. The 

exact solution of Example 1 c for u = 10-1 is also shown in Figure 3 where there are 

visible differences between the exact and asymptotic results. We note that Example la 
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Interval maxlyS(x)| maxd 
I= [ L'XR) x CI X 

10 0,0.5 0.14 3.5(-1) 

0.5,1.0 1.0 2.7(-l) 

10-4 0,0.8 0.069 3.9(-2) 

0.8,1.0 1.0 2.3(-2) 

10- 6 0,0.9 0.068 8.8(-3) 

0.9,1.0 1.0 7.3(-3) 

Norm avg Exec time tA=1 .0 ts=17.5 

TABLE 5 

Differences between asymptotic and shooting solutions for Example 5 

z(x)=0 z (x)=(1+x)1 

Interval max yp 3(X) max dP2 max dF max yl 3(x max dP2 max d3 
E I=[x L"x R] xCI x CI xCI x CI xCI x CI 

101- 0,0.8 0.13 5.9(-3) 5.7(-3) 1.2 1.9(-1) 1.9(-1) 

0.8,1.0 1.0 1.2(-2) 1.2(-2) 1.0 6.9(-2) 6.9(-2) 

102 0,0.98 0.14 6.8(-4) 3.8(-4) 1.0 2.0(-2) 2.0(-2) 

0.98,1.0 1.0 1.4(-3) 1.2(-3) 1.0 8.4(-3) 8.4(-3) 

10-3 0,0.998 0.14 2.6(-4) 2.6(-5) 1.0 2.0(-3) 2.0(-3) 

0.998,1.0 1.0 4.0(-4) 9.0(-5) 1.0 3.0(-4) 4.7(-4) 

104 0,0.9998 0.14 2.4(-4) 5.0(-6) 1.0 2.0(-4) 2.0(-4) 

0.9998,1.0 1.0 4.3(-4) 1.2(-5) 1.0 8.4(-5) 8.8(-5) 

105 0,0.99998 0.14 4.6(-4) 5.5(-6) 1.0 2.0(-5) ** 

0.99998,1.0 1.0 4.2(-4) 2.5(-5) 1.0 2.1(-4) 

Norm avg Exec time tA=1.0 tP2=6.4 t P3=57.4 tA= .0 tP2=7.1 t P3=46.6 

TABLE 6 

Differences between asymptotic and Pearson's solutions for 
Example 6. A ** indicates that a solution could not be 

obtained using less than 5002 points 

has a boundary layer of order O(e/h) = O(A312) at x = 0 and one of order O(,u) at x = 

1 while boundary layers are of order O(,u) and O(N/ ) = O(Vp) at both endpoints for 
Examples lb and 1c, respectively. These differences are observed on the figures. In 

particular, observe that the boundary layer for Example Ic and ,u = 0.1 is of order 

0(N.1), so we should not expect our asymptotic results to be accurate. They obviously 
improve with stiffness. 

Example 2. ey" + ,uy' + y = 0, y(0) = 1, y'(0) = 0. For e and ,u positive and 

tending to zero there are limiting solutions to the initial value problem but not to 

problems prescribing y at each end. Two cases were considered: e = ,i512 (Example 
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Example 7 Example 8 

E 
max d P2 Max d 3 max 

dP2 max d 
(0,1] [0,1] [ 0,1] P2 0,1] 

10_1 6.7(-2) 6.7(-2) 4.8(-l) 4.8(-l) 

L 3 2 1.8(-4) 1.8(-4) 5.5(-5) 5.5(-5) 

_ 3 2.5(-5) 1.1(-5) 2.4(-5) 5.2(-6) 

10 2.6(-5) ** 3.4(-5) 4.0(-6) 

10 5 2.9(-5) 3.9(-5) 

Norm Avg example 7: t A=1.0 tP2=9.6 tP3=-64.6 
Exec time example 8: t A=l.0 t= P3= 28.7 

TABLE 7 

Differences between asymptotic and numerical solutions for 
Examples 7 and 8. A ** indicates that a solution could 

not be obtained using less than 5002 points 

2a) which has a monotonically decaying initial layer and e = A 312 (Example 2b) which 
has a damped oscillatory initial layer (see Figure 4). Runs were made for Ai = 10-' 
with i = 2, 3 in Example 2a and i = 1, 2, 3, 4 in Example 2b and comparisons between 
exact, shooting, and asymptotic solutions are presented in Table 2. We note that our 
numerical results are superior to those obtained by Gear's method. 

Example 3. ey" + (a -x2)y' -xy = 0,y(0) = 1, y(1) = 1?. The results of runs 
for a = 2.0 and 1.1 with e= IO-, i = 1, . .. , 5, are presented in Table 3. The ef- 
fects of round off errors begin to dominate the solution obtained by shooting for e < 

10-4 and for e < 10-5 accurate solutions obtained by Pearson's method require con- 
siderable computational effort. If 0 ? az < 1, then the differential equation would 
have a turning point at x = NA/I and our methods would cease to be applicable. Hence, 
the differential equation with az = 1.1 is a tougher problem than the equation with a = 

2.0. This explains why our results are not very accurate for e > 10-3 with a = 1.1; 
however, as e becomes smaller our results become increasingly more accurate. Graphs 
of the asymptotic solution are presented for az = 2.0 and 1.1 in Figures 5 and 6, re- 
spectively. When significant differences are apparent, the solution by Pearson's method 
is also shown. 

Example 4. eyiv - (1 + e)y" + y = 0, y(O) = y'(O) = y'(1) = 0, y(1) = 1. This 
equation was introduced by Conte [6] and can, of course, be solved exactly. The solu- 
tion of the reduced problem 

-(1 + e)z + z = O. z(O) = O. z(1) = 1 

converges uniformly to y on [0, 1] while the derivative y' has boundary layers of 
thickness O(Ve) at each endpoint. Runs were made for e = l-', i = 1, . . . , 5, and 
the results of the asymptotic and shooting solutions are compared with the exact solu- 
tion in Table 4. Graphs of the asymptotic and exact solutions are presented in Figure 
7. We note, in particular, the difficulty encountered by the shooting solution for small 
values of e. 
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RSYM. SOLN. MU = 0.1 
E- RSYM. SOLN. MU = 0.01 
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.0 o .20 .4 .60 .80 i.0o 
X 

FIGURE 1 

Asymptotic solution of Example la: ey" ? ,uy' - y = 0,y(O) = 1, 

Y(1) = 2, e = p5/2 

RSYM. SOLN. MU = 0.1 
E- RSYM. SOLN. MU = 0.01 
-e RSYM. SOLN. MU = 0.001 

1 . 

.00 .20 .40 .60 .8o 1.00 
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FIGURE 2 
Asymptotic solution of Example Ib: ey" + ,uy' - y = ,y(O) = 1, 

y(1) = ?2 e = A2 
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FIGURE 3 

Exact and asymptotic solutions of Example ic: cy"t ? ,uy' - y = 0, 

Y(O) = ,y(1) = ?, e=8 
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FIGURE 4 

Asymptotic solution of Example 2b: cy" ? ,uy' - y = 0, y(O) = 1, 

Y(0) = 0, e = Y3/2 
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?_ PRSNS. SOLN. EPS 0.1 
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0~~~~~~ 

FIGURE 5 

Asymptotic and Pearson's method solution of Example 3: cy"t ? 

(ax - x2)y' - xy = O. y(O) = 1, y(l) = ?E, ax = 2 

0 

_ | , , , ,~~~~~__ PRSNS . SOLN . EPS 0 . 01 
-8 RSYM . SOLN . EPS = 0 .01 
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.00 .20 .40 .60 .80 1.00 
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FIGURE 6 

Asymptotic and Pearson's method solution of Example 3: ey" ? 

(a1 - x2)y' - xy = O.y(O) = 1, y(l) = 1, a = 1.1 
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FIGURE 7 

Exact and asymptotic solutions of Example 4: eCIV - (1 + e)y" + y = 0, 

Y(O) = y'(O) = y'(l) = 0, y(l) = 1 

SHTING. SOLN. EPS = 1.OE-02 
-8- RSYM. SOLN. EPS = 1.OE-02 
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FIGURE 8 

Asymptotic and shooting solutions of Example 5: e(e X6y +y = 0, 

y'(O) = y"'(O) = y"(1) = 0, y(1) = 1 
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FIGURE 9 

Asymptotic and Pearson's method solutions of Example 6: ey" - 

y y2 = 0, y'(O) + y(O) = 0, y(l) = 1. The solution of the 
reduced problem sought is z(x) = 0 

N 

PRSNS. SOLN. EPS = 0.1 
-8E RSYM. SOLN. EPS = 0.1 
-6- PRSNS. SOLN. EPS = O.01 

\ - RSYM. SOLN. EPS = O.01 
,1 -i-- RSYM. SOLN. EPS = 0.00I 

0 

0 

0 

.00 .20 .40 .60 .80 1.00 
X 

FIGURE 10 

Asymptotic and Pearson's method solutions of Example 6: ey" - 
y _y2 = 0,yI(0) + y() = 0, y(l) = 1. The solution of the 

reduced problem sought is z(x) = (1 + x)-1 
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FIGURE 11 

Asymptotic and Pearson's method solutions of Example 7: 

ey" - Y + Y3 0, Y(0) = Y(1) = 1 
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/-- \SYM. SOLN. EPS 0.001 
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FIGURE 12 

Asymptotic and Pearson's method solutions of Example 8: 
cy" +y -y3= O,y(O) =y(1) =0 
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Example 5. e(e X6ytt) + y = O y'(O) = y"'(O) = y"(1) = O, y(1) = 1. This 
equation is a modification of one described by Timoshenko [391 . Physically, 1 - y is 
proportional to the deflection of an elastically weak (or long), uniformly loaded, simply 
supported, variable thickness beam on an elastic foundation. The thickness of the beam 
is t0eX1/3x2. Runs were made for e = 1o-; i = 2, 4,6, and comparisons between 
asymptotic and shooting solutions are presented in Table 5 and Figure 8. The solution 
y has a weak boundary layer of thickness O(e?/) at x = 1. The slow decay of the 
boundary layer accounts for our rather poor agreement for e > 10-4. 

Example 6. e2y1 -y - y2 = 0,y'(0) +y(O) = 0,y(1) = 1. Since the nonuni- 

form convergence occurs at x = 1 the reduced problem 

Z'+ Z2 =0, z'(0) + Z(0) = 0 

has two solutions z(x) = 0 and z(x) = (1 + x)-1. Corresponding multiple solutions of 
the full problem result (cf. O'Malley [30]). Results obtained by the asymptotic method 

and by Pearson's method are compared for both solutions in Table 6 for e = 10T-, 
i = 1, . . . , 5. Graphs of some of these results are presented in Figures 9 and 10 for 

the solutions corresponding to z(x) = 0 and z(x) = (1 + x)-l, respectively. 
Example 7. ey" - y + y3 = 0, y(0) = y(l) = 1. The limiting solution z(x) = 0 

satisfies all of our hypotheses for these boundary conditions and requires a boundary 
layer at both endpoints. It is interesting to note that these boundary conditions also 
allow the solution y(x) = 1 even though the limiting solutions z(x) = + 1 do not satisfy 
our restrictions. (In our defense, however, we note that the "nearby" problem given by 
the same differential equation with y(O) = y(l) = 0.99 would not have a solution tend- 
ing to 1.) Runs were made for e = 10i, i = 1, . . a, 5, and comparisons between 

solutions obtained by the asymptotic method and by Pearson's method for the limiting 
solution z(x) = 0 are presented in the first three columns of Table 7 and in Figure 1. 

Example 8. ey" + y - y3 = 0, y(0) = y(l) = 0. The limiting solutions z(x) = 
? 1 follow under our hypotheses for these boundary conditions. While the trivial solu- 
tion y(x) = 0 does not satisfy our hypotheses, it is also valid for these boundary condi- 
tions. In addition, O'Malley [311 shows that there are denumerably many solutions of 
this problem switching back and forth between ? 1. The results of calculations cor- 
responding to the limiting solution z(x) = 1 obtained by the asymptotic method and 
Pearson's method are presented in the last two columns of Table 7 and in Figure 12. 
Although exact solutions of these last problems could be obtained using elliptic inte- 
grals, we have not done so. 

5. Conclusions. The results of the previous section indicate that our procedure 
can be used to obtain accurate numerical solutions of very stiff ordinary differential 
equations with very little computational effort. The accuracy of our methods depends 
on the magnitude of the small coefficients in the equation as well as the amount by 
which the coefficients vary and the thickness of the boundary layers. For example, 
the results of Section 4 clearly indicate that our methods are accurate even when the 
magnitude of the small parameters, say e, is moderate in size provided that the bound- 
ary layers are of thickness 0(e) or 0(/e_). However, in Example 5, where the bound- 
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ary layer is of thickness 0(e?4) our results become accurate only for e ? 10-6. Since 

our results are asymptotic as the stiffness increases, they should not be used for slightly 

stiff, and should be used cautiously for moderately stiff equations. 

We envision that asymptotic methods like ours could form part of a computa- 

tional library of methods for solving ordinary differential equations. Such a library 

would contain a general purpose method, like, for example, Keller's adaptive grid pro- 

cedures [17], [18], [20] which would be used for the majority of problems, while an 

asymptotic method would be used for very stiff problems. In addition, our results 

could provide an initial approximation to an adaptive grid procedure for slightly stiff 

or moderately stiff problems (cf. Yarmish [45], [46]). 

We anticipate that combined asymptotic and numerical methods could be devel- 

oped for more complicated equations, e.g., turning point problems and higher order 

nonlinear systems. We hope that this investigation might prove useful in developing 

further results. 
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